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Abstract Equations of motion governing thermally induced vibration of plates with inhomogeneous material
properties through the thickness direction are presented. Equations of motion for thermally induced flexural vibra-
tion for inhomogeneous rectangular plates in which the material properties are given in the form of a power of
the thickness coordinate are derived from the above-mentioned fundamental equations. An exact solution of the
one-dimensional temperature change is presented for an inhomogeneous plate in which one surface is exposed to a
sinusoidally varying temperature, and the other is kept at zero temperature change. The associated quasi-static and
dynamic solutions pertinent to deflection and thermal stresses in the inhomogeneous rectangular plate are derived
under the condition of simply supported edges. Numerical calculations are performed, and the effects of mate-
rial inhomogeneity such as Young’s modulus, coefficient of linear thermal expansion, and mass density, angular
frequency in cyclic heating, and aspect ratio on the thermo-elastic response of the rectangular plate are shown in
graphical form. Comparing the dynamic solutions with quasi-static ones, the effect of inertia on the thermo-elastic
response of the inhomogeneous rectangular plate is evaluated.
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1 Introduction

The use of structural members under harsh conditions, such as high temperature and pressure, has increased in recent
years, necessitating the development of various kinds of new materials. Functionally graded materials (FGMs) have
received attention as one of these new materials, and are regarded for their potential applications in such fields
as aerospace, engineering materials, opto-electronics, energy-conversion systems, and biomedical materials. The
concept of FGMs [1] was proposed by Japanese researchers in the fields of aerospace and material science in 1984
for the purpose of developing advanced heat-resistant materials for a future space-plane. Since then FGMs have
received attention, and a considerable amount of research on FGMs has been carried out all over the world. In
FGMs, for the relaxation of thermal stress, ceramics are used on a surface exposed to surrounding high-temperature
media so as to enable to obtain high heat resistance. Meanwhile metallic materials are used on the other surface
cooled by a coolant so as to attain high thermal conductivity and high mechanical strength. Furthermore, a graded
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layer in which the material composition, microstructure and porosity are controlled beforehand to reduce thermal
stresses caused by a mismatch of thermal expansion is introduced between the two surfaces. In the graded layer, the
volume fraction of each material varies spatially. Therefore, the thermophysical and mechanical material constants
vary with their composition. FGMs are treated as inhomogeneous materials in which the material constants vary
spatially in theories on conduction of heat, elasticity and thermo-elasticity. Over the past two decades, various
kinds of studies on FGMs have been conducted for problems in heat-conduction, elasticity and thermo-elasticity
in which thermal and mechanical behaviors are analyzed for structural members, fracture, inverse problems and
optimization.

When inhomogeneous materials are subjected to quasi-static mechanical or thermal loadings, the effect of inertia
may be disregarded in most elastic and thermo-elastic problems; inertia terms are usually omitted from the equations
of thermo-elasticity. In the models, wave propagation and vibration, which may arise in structural members, are
disregarded. Solutions which are obtained under this simplification are often referred to as “static” or “quasi-static”.
Vibration induced by heating may occur in thin-walled flexible structures. This is referred to as thermally induced
vibration. Solutions which are obtained while considering inertia terms in the thermo-elasticity equations are often
referred to as “dynamic”.

The effect of inertia on the thermo-elastic response has been considered in dynamical thermo-elastic problems
for homogeneous materials. Danilovskaya [2,3] examined a dynamical thermo-elastic problem in a half-space con-
sisting of a homogeneous elastic medium which is suddenly exposed to an ambient medium with a high temperature
on the boundary surface. Danilovskaya’s investigations are described in the book by Boley and Weiner [4]. The
importance of the inertia effect was emphasized in a class of thermo-elastic wave-propagation problems. Boley
[5] analyzed a thermally induced flexural vibration problem involving a simply supported rectangular beam, one
of whose sides is subjected to a sudden application of heat. A simple formula for approximating the ratio of the
maximum deflection, obtained by a forced-vibration analysis, was presented, taking into account the effect of inertia
on static deflection. As a result of this, the effect of inertia was found to be important for a slender beam. Boley and
Barber [6] studied thermally induced flexural vibrations of rectangular plates and beams under some typical heat
applications. A simple formula for rapidly estimating the ratio of the maximum deflection of the dynamic solution
to the maximum deflection of the static solution was presented in terms of a dimensionless parameter. It was shown
that the effect of inertia became important for rapidly applied heat inputs and for thin-walled plates. Subsequently,
Boley [7] developed a simplified method to analyze thermally induced flexural vibrations of heated beams and
plates. A simple general formula was derived for the ratio of the maximum dynamic deflection to the maximum
static deflection. However, the formula was only approximate, but it was sufficiently accurate for engineering pur-
poses, and reflected the essential physical characteristics of the phenomenon. The effects of damping and axial or
in-plane loads were also considered and approximate formulas were derived.

Ignaczak and Nowacki [8] considered thermally excited flexural vibrations of a plate of moderate thickness
subject to a harmonically varying heat flow in time on the boundary surfaces under some mechanical boundary
conditions. Cukic [9] considered transversal vibrations of plates, produced by a harmonic heating, by means of the
theory of coupled thermo-elasticity. Jadeja and Loo [10] used the Galerkin method to analyze thermally induced
vibration of a rectangular plate with one edge fixed and the other edges simply supported, which was subjected to a
sinusoidal heat input on one surface while the other was insulated thermally. The occurrence of thermally induced
vibrations was shown in a flexible boom of a satellite subjected to variable heating [11] or a split-blanket solar array
due to self-shadowing [12]. Because these thermally induced vibrations may degrade system performance, either
by undesirable displacements or by unexpected accelerations, these problems are of practical importance.

Papers on the analysis of vibration problems regarding structural members for inhomogeneous elastic media are
relatively scarce. Tomar et al. [13] studied free axisymmetric vibrations of an isotropic, elastic, non-homogeneous
circular plate of linearly varying thickness on the basis of the classical theory of plates. The non-homogeneity of the
material of the plate was assumed to arise due to the exponential variation of Young’s modulus and mass density in the
radial direction whereas Poisson’s ratio was assumed to remain constant. The frequency parameters corresponding
to the first two vibration modes were computed for different values of the non-homogeneity parameter and thick-
ness variation constant (taper constant) and for clamped and simply supported edge conditions of the plate. Horgan
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and Chan [14] treated the vibration of inhomogeneous strings, rods and membranes with continuously varying
properties, and provided specific examples for which closed-form exact solutions were obtained. An integral-equa-
tion-based method for obtaining lower bounds for the vibration frequencies was described, and the effectiveness of
the method was demonstrated.

Loy et al. [15] studied the vibration of cylindrical shells made of a functionally graded material composed of
stainless steel and nickel. The frequency characteristics, the influence of the constituent volume fractions and the
effects of the configurations of the constituent materials on the frequencies were demonstrated. Oh et al. [16] stud-
ied the thermo-elastic modeling and vibrations of thin-walled rotating blades turbomachinery made of functionally
graded ceramic–metal-based materials. The governing dynamic equations expressed in terms of one-dimensional
displacement measures were formulated for pre-twisted and tapered thin-walled beams, rotating at a constant angu-
lar velocity and exposed to a steady temperature field of a prescribed gradient through the blade-wall thickness. The
numerical results of the effects of volume fraction, temperature gradient and taper ratio on the vibration character-
istics were investigated taking into account the temperature dependence of the material properties. Vel and Batra
[17] presented a three-dimensional exact solution for free and forced vibrations of simply supported functionally
graded rectangular plates. Exact natural frequencies, displacements and stresses were used to assess the accuracy
of the classical plate theory, the first-order shear-deformation theory and a third-order shear-deformation theory for
functionally graded plates. Forced vibrations of a plate with a sinusoidally spatial variation of the pressure applied
on its top surface were investigated.

When inhomogeneous materials such as FGMs are applied to structural materials in aerospace engineering, the
structures are necessarily required to be thin-walled. Weight-saving in structural members often results in a consid-
erable decrease in thickness and stiffness. When thin-walled members are subject to repeated loads due to fluctuating
temperatures, an analysis of thermally induced vibration is essential to avoid breakage failure due to resonance and
fatigue. However, a study which treats a thermally induced vibration of thin-walled structural members made of
inhomogeneous materials has not yet appeared in the literature.

This is why the present authors have devoted themselves to the theoretical treatment of heat conduction and
thermally induced vibration problems of thin-walled structural members composed of a continuous linear medium
with isotropic and inhomogeneous material properties through the thickness direction. In [18] an exact solution
was derived for a one-dimensional inhomogeneous beam undergoing a sinusoidal temperature variation at one of
its boundaries. The effects of frequency in cyclic heating and material inhomogeneity on the dynamic response of
deflection and thermal stresses were evaluated numerically for a simply supported beam and for a beam with one
edge fixed and the other free. Here we present an analytical study of thermally induced flexural vibration for an
inhomogeneous rectangular plate in the case of cyclic heating. First, the equations of motion governing thermally
induced vibration of plates with inhomogeneous material properties through the thickness direction are considered.
Subsequently, equations of motion of thermally induced flexural vibration for inhomogeneous rectangular plates
in which the material properties are given in the form of a power of the thickness coordinate are derived from the
above-mentioned fundamental equations. We consider an inhomogeneous plate in which one surface is exposed
to a sinusoidally varying temperature, and the other is kept at zero temperature change. We derive the associated
quasi-static and dynamic solutions pertinent to deflection and thermal stresses in the inhomogeneous rectangular
plate for simply supported edges. We perform a numerical calculation, and show the results of temperature change in
an unsteady state and the associated quasi-static behavior and dynamic response of deflection and thermal stresses of
the plate. Comparing the maximum dynamic thermo-elastic response with the maximum quasi-static thermo-elastic
behavior, we discuss the influence of frequency in cyclic heating, material inhomogeneity and aspect ratio on the
inertia effect in the thermo-elastic response of the rectangular plate.

2 Equations of motion for inhomogeneous plates

We consider a plate of uniform thickness h which is subject to a distributed transverse load p(x, y, t) and is
exposed to a temperature change T (x, y, z′, t) from the stress-free state. We assume that the plate is composed
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of isotropic linear elastic material whose thermo-elastic properties are temperature-independent, and that the plate
has inhomogeneous material properties through the thickness direction. The origin of the coordinate in the thick-
ness direction is generally selected at the middle plane of the cross-section of the plate for thermal bending of a
homogeneous plate [19,20]. If the origin of the coordinate in the thickness direction is appropriately selected in
the cross-section of the inhomogeneous plate, in which Young’s modulus has an arbitrary inhomogeneity in the
thickness direction, thermal bending in the inhomogeneous plate can be treated easily. Thus, the coordinate in the
thickness direction z whose position of the origin is located at z′ = η from the top surface z′ = 0 of the plate is
defined as

z = z′ − η. (1)

The position η of the origin of the coordinate z is defined as∫ h

0
E(z′)(z′ − η)dz′ = 0. (2)

Consequently, the position η is determined as

η =
∫ h

0 E(z′)z′ dz′
∫ h

0 E(z′)dz′ . (3)

If it is assumed that line elements which originally are perpendicular to a reference plane of the plate remain
straight and normal to the deformed reference plane, the displacement components u′, v′ in the x- and y-directions
at a point x, y, z in the plate are expressed as

u′ = u − z
∂w

∂x
, v′ = v − z

∂w

∂y
, (4)

in which u = u(x, y), v = v(x, y) are the displacement components in the x- and y-directions at the reference
plane z = 0, and w = w(x, y) is the deflection of the plate.

Assuming that the linear strain-displacement relations are valid, we may write the in-plane strain components as
follows:

εxx = ∂u′

∂x
= ∂u

∂x
− z

∂2w

∂x2 , εyy = ∂v′

∂y
= ∂v

∂y
− z

∂2w

∂y2 ,

εxy = 1

2

(
∂u′

∂y
+ ∂v′

∂x

)
= 1

2

(
∂u

∂y
+ ∂v

∂x

)
− z

∂2w

∂x∂y
. (5)

The corresponding stress components are

σxx = E

1 − ν2

{
∂u

∂x
+ ν

∂v

∂y
− z

(
∂2w

∂x2 + ν
∂2w

∂y2

)
− (1 + ν)αT

}
,

σyy = E

1 − ν2

{
∂v

∂y
+ ν

∂u

∂x
− z

(
∂2w

∂y2 + ν
∂2w

∂x2

)
− (1 + ν)αT

}
,

σxy = E

2(1 + ν)

(
∂u

∂y
+ ∂v

∂x
− 2z

∂2w

∂x∂y

)
,

(6)

in which Young’s modulus E = E(z′) and the coefficient of linear thermal expansion α = α(z′) vary with the
thickness coordinate z′, whereas Poisson’s ratio ν is assumed to be constant.

Resultant forces per unit length Nx,Ny,Nxy and resultant moments per unit length Mx,My and Mxy with respect
to the reference plane z = 0 are defined as

Nx =
∫ h−η

−η

σxxdz, Ny =
∫ h−η

−η

σyydz, Nxy =
∫ h−η

−η

σxydz,

Mx =
∫ h−η

−η

σxxzdz, My =
∫ h−η

−η

σyyzdz, Mxy = −
∫ h−η

−η

σxyzdz. (7)

In consideration of the relation (1), substitution of (6) in (7) gives
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Fig. 1 Resultant forces and moments acting on plate element

Nx = c1

(
∂u

∂x
+ ν

∂v

∂y

)
− 1

1 − ν
NT, Ny = c1

(
∂v

∂y
+ ν

∂u

∂x

)
− 1

1 − ν
NT,

Nxy = 1

2
(1 − ν)c1

(
∂u

∂y
+ ∂v

∂x

)
(8)

and

Mx = −c3

(
∂2w

∂x2 + ν
∂2w

∂y2

)
− 1

1 − ν
MT, My = −c3

(
∂2w

∂y2 + ν
∂2w

∂x2

)
− 1

1 − ν
MT,

Mxy = (1 − ν)c3
∂2w

∂x∂y
,

(9)

where the coefficients c1, c3 and the thermal resultant force NT and thermal resultant moment MT are defined as

c1 = 1

1 − ν2

∫ h

0
E(z′)dz′, c3 = 1

1 − ν2

∫ h

0
E(z′)(z′ − η)2dz′, (10)

NT =
∫ h

0
α(z′)E(z′)T (x, y, z′, t)dz′, MT =

∫ h

0
α(z′)E(z′)T (x, y, z′, t)(z′ − η)dz′. (11)

Next, we consider the equations of motion for the inhomogeneous plate element shown in Fig. 1. Resultant shear
forces per unit length Qx,Qy and resultant moment per unit length Myx with respect to the reference plane z = 0
are defined as

Qx =
∫ h−η

−η

σxzdz, Qy =
∫ h−η

−η

σyzdz, Myx =
∫ h−η

−η

σyzzdz. (12)

The equation of motion for the z-direction is

∂Qx

∂x
+ ∂Qy

∂y
+ p = µ

∂2w

∂t2 , (13)

in which µ is mass per unit area defined as

µ =
∫ h

0
ρ(z′)dz′, (14)

where ρ = ρ(z′) denotes mass density.
Summation of moments about the y- and x-axes leads to the expressions

∂Mx

∂x
+ ∂Myx

∂y
− µ1

∂2u

∂t2 + µ2
∂3w

∂x∂t2 = Qx,

∂My

∂y
− ∂Mxy

∂x
− µ1

∂2v

∂t2 + µ2
∂3w

∂y∂t2 = Qy,

(15)

in which
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µ1 =
∫ h

0
ρ(z′)(z′ − η)dz′, µ2 =

∫ h

0
ρ(z′)(z′ − η)2dz′. (16)

Equations (9), (13) and (15) can be combined to obtain
(

∂2

∂x2 + ∂2

∂y2

)2

w + µ

c3

∂2w

∂t2 − µ2

c3

∂2

∂t2

(
∂2w

∂x2 + ∂2w

∂y2

)

= 1

c3

{
p − 1

1 − ν

(
∂2

∂x2 + ∂2

∂y2

)
MT − µ1

∂2

∂t2

(
∂u

∂x
+ ∂v

∂y

)}
.

(17)

Next, the equations governing motion in the x- and y-directions are

∂Nx

∂x
+ ∂Nyx

∂y
= µ

∂2u

∂t2 − µ1
∂2

∂t2

(
∂w

∂x

)
,

∂Nxy

∂x
+ ∂Ny

∂y
= µ

∂2v

∂t2 − µ1
∂2

∂t2

(
∂w

∂y

)
. (18)

If a fundamental natural frequency among longitudinal vibrations for the in-plane displacement components u, v

at a reference plane is much larger than the natural frequency in flexural vibration for deflection, the inertia terms
of the in-plane displacement components u, v may be ignored. Furthermore, ignoring rotary inertia, the dynamic
response of deflection is governed by
(

∂2

∂x2 + ∂2

∂y2

)2

w + µ

c3

∂2w

∂t2 = 1

c3

{
p − 1

1 − ν

(
∂2

∂x2 + ∂2

∂y2

)
MT

}
. (19)

Similarly, the equations governing the in-plane motions are, respectively,

∂

∂x

(
Nx + µ1

∂2w

∂t2

)
+ ∂Nyx

∂y
= 0,

∂

∂y

(
Ny + µ1

∂2w

∂t2

)
+ ∂Nxy

∂x
= 0. (20)

Introducing a stress function χ defined as

Nx + µ1
∂2w

∂t2 ≡ ∂2χ

∂y2 , Ny + µ1
∂2w

∂t2 ≡ ∂2χ

∂x2 , Nxy ≡ − ∂2χ

∂x∂y
, (21)

we observe that Eqs. (20) are satisfied identically.
Substitution of (21) in (8) and the equations of compatibility in the strain components yields the governing equation
for the stress function χ as
(

∂2

∂x2 + ∂2

∂y2

)2

χ = (1 − ν)µ1
∂2

∂t2

(
∂2w

∂x2 + ∂2w

∂y2

)
−

(
∂2

∂x2 + ∂2

∂y2

)
NT. (22)

3 Analytical development

3.1 Heat conduction for inhomogeneous plates

We consider a plate of thickness h as shown in Fig. 2. The plate has inhomogeneous material properties which vary
continuously in the thickness direction z′. The plate, which initially is at zero temperature, is bounded by the planes
z′ = 0 and z′ = h. The surface z′ = h is kept at zero temperature change while the surface z′ = 0 is exposed, for

Fig. 2 Geometry and
conditions
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time t > 0, to a prescribed temperature which varies sinusoidally in time with amplitude T0 and angular frequency
ω. The fundamental equation of heat conduction in an unsteady state for the plate is given as

c(z′)ρ(z′)∂T

∂t
= ∂

∂z′

{
λ(z′)∂T

∂z′

}
, (23)

in which cρ is the specific heat capacity; λ is the thermal conductivity.
The corresponding initial condition and the thermal boundary conditions are expressed as

T = 0, t = 0, (24)

T = T0 sin ωt, z′ = 0, (25)

T = 0, z′ = h. (26)

It is assumed that the specific heat capacity cρ and the thermal conductivity λ are independently given in the form
of a power of the thickness coordinate z′:

c(z′)ρ(z′) = c0ρ0

(
1 + z′

h

)k

, λ(z′) = λ0

(
1 + z′

h

)l

(27)

Here the constants c0, ρ0, λ0 are typical quantities of specific heat, mass density and thermal conductivity, respec-
tively. The exponents k, l are parameters representing the inhomogeneities in the specific heat capacity and the
thermal conductivity, respectively.

The following dimensionless quantities are defined as

T̄ (ζ, τ ) = T (z′, t)
T0

, ζ = 1 + z′

h
, τ = κ0

h2 t, ω̄ = h2

κ0
ω, (28)

in which κ0 is a typical value of the thermal diffusivity.

κ0 = λ0

c0ρ0
. (29)

Solving the fundamental equation (23) under the conditions (24)–(26) with the dimensionless variables defined in
(28) by means of the Laplace transform and the residue theorem, we may write the solution for the temperature
change, in dimensionless form, in terms of Bessel functions with real order and complex arguments as

T̄ (ζ, τ ) = −
∞∑

j=1

e−q2
j τ 2qj ω̄

q4
j + ω̄2

ζp1

F ′
1(qj )

{
Jξ (p3qj ζ

p2)Yξ (2
p2p3qj ) − Yξ (p3qj ζ

p2)Jξ (2
p2p3qj )

}

+ 1

2i
(cos ω̄τ + i sin ω̄τ )

ζp1

F1(qj )

{
Jξ (p3z1ζ

p2)Yξ (2
p2p3z1) − Yξ (p3z1ζ

p2)Jξ (2
p2p3z1)

}

− 1

2i
(cos ω̄τ − i sin ω̄τ )

ζp1

F1(qj )

{
Jξ (p3z2ζ

p2)Yξ (2
p2p3z2) − Yξ (p3z2ζ

p2)Jξ (2
p2p3z2)

}
, (30)

in which

ξ =
∣∣∣∣ l − 1

k − l + 2

∣∣∣∣ (31)

p1 = 1

2
(1 − l), p2 = 1

2
(k − l + 2), p3 = 2

|k − l + 2| , (32)

z1 =
(

ω̄

2

) 1
2

(1 − i), z2 =
(

ω̄

2

) 1
2

(1 + i), i = √−1, (33)

F1(q) = Jξ (p3q)Yξ (2
p2p3q) − Yξ (p3q)Jξ (2

p2p3q), (34)
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F ′
1(q) = −p3

[{
Jξ+1(p3q)Yξ (2

p2p3q) − Yξ+1(p3q)Jξ (2
p2p3q)

}
+ 2p2

{
Jξ (p3q)Yξ+1(2

p2p3q) − Yξ (p3q)Jξ+1(2
p2p3q)

}]
. (35)

The characteristic value qj is the j th positive root which satisfies the following transcendental equation

Jξ (p3q)Yξ (2
p2p3q) − Yξ (p3q)Jξ (2

p2p3q) = 0. (36)

Now we transform the solution of the temperature change (30) into expression in terms of real elementary functions.
Supposing a relation between the exponents k and l as

k = −l (−1 < k, l < 1), (37)

then Eq. (31) becomes

ξ = 1

2
. (38)

The following relations between Bessel functions with half-odd-numbered order and elementary functions hold:

J1/2(z) =
(

2

πz

) 1
2

sin z, J3/2(z) =
(

2

πz

) 1
2
(

1

z
sin z − cos z

)
,

Y1/2(z) = −
(

2

πz

) 1
2

cos z, Y3/2(z) = −
(

2

πz

) 1
2
(

1

z
cos z + sin z

)
. (39)

Transforming (30) with the relations (39), we may write the solution of temperature change T̄ as

T̄ (ζ, τ ) =
∞∑

j=1

D1j (ζ )e−q2
j τ + D2(ζ ) cos ω̄τ + D3(ζ ) sin ω̄τ, (40)

in which

D1j (ζ ) = − 2ω̄qj

q4
j + ω̄2

(−1)j

p3(1 − 2p2)
sin

(
p3(ζ

p2 − 2p2)qj

)
,

D2(ζ ) = 1

sin2 β cosh2 β + cos2 β sinh2 β
(sin α cosh α cos β sinh β − cos α sinh α sin β cosh β),

D3(ζ ) = 1

sin2 β cosh2 β + cos2 β sinh2 β
(sin α cosh α sin β cosh β + cos α sinh α cos β sinh β)

α = p3

(
ω̄

2

) 1
2

(ζp2 − 2p2), β = p3

(
ω̄

2

) 1
2

(1 − 2p2).

(41)

Substitution of (38) in (32) gives

p2 = 1 − l, p3 = 1

|1 − l| . (42)

Substituting Eqs. (38), (39) in (36), we may express the characteristic value qj as

qj = jπ

p3(2p2 − 1)
j = 1, 2, . . . . (43)

3.2 Quasi-static thermo-elastic behavior of inhomogeneous plates

We assume that Young’s modulus E and the coefficient of linear thermal expansion α are independently given in
the form of a power of the thickness coordinate z′ as

E(z′) = E0

(
1 + z′

h

)m

, α(z′) = α0

(
1 + z′

h

)n

, (44)
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in which the constants E0, α0 are typical quantities representing Young’s modulus and the coefficient of linear
thermal expansion, and the exponents m, n are parameters representing the inhomogeneities in Young’s modulus
and the coefficient of linear thermal expansion, respectively.

The following dimensionless quantities are defined:

(x̄, ȳ) = (x, y)

a
, b̄ = b

a
, h̄ = h

a
, Ē(ζ ) = E(z′)

E0
, ᾱ(ζ ) = α(z′)

α0
, η̄ = η

h
, c̄3 = c3

E0h3 ,

w̄ = w

α0T0h
, M̄T = MT

α0E0T0h2 , (σ̄xx, σ̄yy, σ̄xy) = (σxx, σyy, σxy)

α0E0T0
,

(45)

in which a, b are lengths of the rectangular plate.
With the dimensionless quantities in (45), Eqs. (44) lead to

Ē(ζ ) = ζm, ᾱ(ζ ) = ζ n. (46)

The position of the reference plane η and flexural rigidity c3 are given in dimensionless form as

η̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(m + 1)(2m+2 − 1)

(m + 2)(2m+1 − 1)
− 1, m �= −2,−1,

2 log 2 − 1, m = −2,

1

log 2
− 1, m = −1,

(47)

c̄3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − ν2

{
2m+3 − 1

m + 3
− (m + 1)(2m+2 − 1)2

(m + 2)2(2m+1 − 1)

}
, m �= −3,−2,−1,

1

1 − ν2

(
log 2 − 2

3

)
, m = −3,

1

1 − ν2

{
1 − 2 (log 2)2

}
, m = −2,

1

1 − ν2

(
3

2
− 1

log 2

)
, m = −1.

. (48)

Disregarding the inertia term in (19), and considering that the plate is not subject to a transverse load, we may write
the fundamental equation governing the quasi-static deflection in dimensionless form as
(

∂2

∂x̄2 + ∂2

∂ȳ2

)2

w̄ = − 1

1 − ν

1

h̄2

1

c̄3

(
∂2

∂x̄2 + ∂2

∂ȳ2

)
M̄T. (49)

Supposing the plate is simply supported on a contour, mechanical boundary conditions for the deflection w can be
given in dimensionless form as

w̄ = 0,
∂2w̄

∂x̄2 = − 1

1 − ν

1

h̄2

1

c̄3
M̄T, x̄ = 0, 1,

w̄ = 0,
∂2w̄

∂ȳ2 = − 1

1 − ν

1

h̄2

1

c̄3
M̄T, ȳ = 0, b̄.

(50)

Now the dimensionless form of the thermal resultant moment M̄T is expanded into a double trigonometric series as

M̄T =
∞∑

p=odd

∞∑
q=odd

Fpq(τ ) sin αpx̄ sin βqȳ, (51)
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Fpq(τ ) = 16

π2

1

pq

⎧⎨
⎩

∞∑
j=1

e−q2
j τ

∫ 2

1
D1j (ζ )ζm+n(ζ − 1 − η̄)dζ

+ cos ω̄τ

∫ 2

1
D2(ζ )ζm+n(ζ − 1 − η̄)dζ + sin ω̄τ

∫ 2

1
D3(ζ )ζm+n(ζ − 1 − η̄)dζ

⎫⎬
⎭ , (52)

αp = pπ, βq = qπ

b̄
.

The definite integrals in (52) are evaluated numerically.
The solution of the quasi-static deflection therefore may be presented in dimensionless form as

w̄ =
∞∑

p=odd

∞∑
q=odd

wpq(τ) sin αpx̄ sin βqȳ, (53)

wpq(τ) = 1

1 − ν

1

h̄2

1

c̄3

Fpq(τ )

α2
p + β2

q

. (54)

Suppose that the in-plane displacement components at the reference plane are restrained to be zero at edge lines:

u = 0 at x = 0, a, v = 0 at y = 0, b; (55)

the in-plane displacement components at the reference plane become

u(x, y) = 0, v(x, y) = 0. (56)

Then the equations of (8) reduce to

Nx = − 1

1 − ν
NT, Ny = − 1

1 − ν
NT, Nxy = 0. (57)

Dimensionless forms of thermal-stress components may be written as

σ̄xx = h̄2

1 − ν2 ζm(ζ − 1 − η̄)

∞∑
p=odd

∞∑
q=odd

wpq(τ)(α2
p + νβ2

q ) sin αpx̄ sin βqȳ − 1

1 − ν
ζm+nT̄ ,

σ̄yy = h̄2

1 − ν2 ζm(ζ − 1 − η̄)

∞∑
p=odd

∞∑
q=odd

wpq(τ)(β2
q + να2

p) sin αpx̄ sin βqȳ − 1

1 − ν
ζm+nT̄ ,

σ̄xy = − h̄2

1 − ν2 ζm(ζ − 1 − η̄)

∞∑
p=odd

∞∑
q=odd

wpq(τ)αpβq cos αpx̄ cos βqȳ.

(58)

3.3 Dynamic thermo-elastic response of inhomogeneous plates

We assume that the mass density is given as a power of the thickness coordinate z′ as

ρ(z′) = ρ0

(
1 + z′

h

)γ

, (59)

in which the exponent γ is a parameter representing the inhomogeneity in the mass density.
The following dimensionless quantity is defined as

µ̄ = µ

E0h3/κ2
0

. (60)
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Substitution of (59) in (14) with (60) gives

µ̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ0κ
2
0

E0h2

2γ+1 − 1

γ + 1
, γ �= −1,

ρ0κ
2
0

E0h2 ln 2, γ = −1.

(61)

When the plate is not subjected to a transverse load, the equation of motion governing the dynamic deflection is
expressed in dimensionless form as(

∂2

∂x̄2 + ∂2

∂ȳ2

)2

w̄ + µ̄

c̄3

1

h̄4

∂2w̄

∂τ 2 = − 1

1 − ν

1

h̄2

1

c̄3

(
∂2

∂x̄2 + ∂2

∂ȳ2

)
M̄T. (62)

Solving a homogeneous equation, which is given by elimination of the right-hand side in the equation of motion
(62), we obtain the solution of free flexural vibration. The natural angular frequency in flexural vibration �pq is
given as

�pq =
(

c̄3h̄
4

µ̄

) 1
2

(α2
p + β2

q ). (63)

Expanding the solution of the dynamic deflection satisfying the equation of motion (62) as a superposition of the
flexural vibrations of natural modes, and solving, under the following initial conditions

w̄ = 0,
∂w̄

∂τ
= 0 at τ = 0, (64)

we obtain the dynamic solution for the deflection as

w̄ =
∞∑

p=odd

∞∑
q=odd

�pq(τ) sin αpx̄ sin βqȳ, (65)

in which

�pq(τ) = 1

1 − ν

1

c̄3

1

h̄2

4b̄

π2

α2
p + β2

q

pq

×
⎡
⎣ ∞∑

j=1

1

�2
pq + q4

j

(
e−q2

j τ − cos �pqτ + q2
j

�pq

sin �pqτ

) ∫ 2

1
D1j (ζ )ζm+n(ζ − 1 − η̄)dζ

+ 1

�2
pq − ω̄2

(
cos ω̄τ − cos �pqτ

) ∫ 2

1
D2(ζ )ζm+n(ζ − 1 − η̄)dζ

+ 1

�2
pq − ω̄2

(
sin ω̄τ − ω̄

�pq

sin �pqτ

) ∫ 2

1
D3(ζ )ζm+n(ζ − 1 − η̄)dζ

⎤
⎦ . (66)

If the in-plane displacement components at the reference plane are restrained to be zero at edge lines, the in-plane dis-
placement components u, v at the reference plane become zero. Then, the thermal-stress components are expressed
in dimensionless form as

σ̄xx = h̄2

1 − ν2 ζm(ζ − 1 − η̄)

∞∑
p=odd

∞∑
q=odd

�pq(τ)(α2
p + νβ2

q ) sin αpx̄ sin βqȳ − 1

1 − ν
ζm+nT̄ ,

σ̄yy = h̄2

1 − ν2 ζm(ζ − 1 − η̄)

∞∑
p=odd

∞∑
q=odd

�pq(τ)(β2
q + να2

p) sin αpx̄ sin βqȳ − 1

1 − ν
ζm+nT̄ ,

σ̄xy = − h̄2

1 − ν2 ζm(ζ − 1 − η̄)

∞∑
p=odd

∞∑
q=odd

�pq(τ)αpβq cos αpx̄ cos βqȳ,

(67)

in which the normal components of the thermal stress σ̄ii (i = x, y) can be expressed as the summation of the
components of bending stress, which are expressed as σ̄ii−out(i = x, y) and the component produced by restrained
from free thermal expansion, which is expressed as σ̄T.
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Table 1 Material
properties of mild steel

Young’s modulus E0 206.0 [GPa]

Coefficient of linear thermal expansion α0 11.5 × 10−6 [1/K]

Poisson’s ratio ν 0.28

Mass density ρ0 7.85 × 103 [kg/m3]

Thermal diffusivity κ0 2.02 × 10−5 [m2/s]
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Fig. 3 Variation of material property in the thickness direction
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Fig. 4 Difference in time evolution of temperature change at the
upper boundary surface ζ = 1 due to frequency in cyclic heating

4 Numerical results and discussion

We perform numerical calculations and examine the effects of material inhomogeneities, angular frequency in cyclic
heating and aspect ratio of a rectangular plate on the dynamical thermo-elastic response. The length of the plate a,
its thickness h and aspect ratio b̄ = b/a are given as

a = 5.01 [m], h = 5 × 10−3 [m], b̄ = {1, 1.5, 2, 2.5, 3}. (68)

Typical values of the material properties are assumed to be those of mild steel as shown in Table 1. The angular
frequency in cyclic heating ω̄ is given as

ω̄ = ε�
(h−square)
11 , (69)

in which ε is a parameter; �(h−square)
11 is a dimensionless fundamental natural angular frequency in flexural vibration

for a homogeneous square plate.
We assume that the inhomogeneity parameters in the specific heat and the thermal conductivity k, l are set at

zero, and that the parameters in Young’s modulus, the coefficient of linear thermal expansion and the mass density
are independently given as

k = l = 0, m, n, γ = {−1, −0.5, 0, 0.5, 1}. (70)

Figure 3 shows the variation of the material property in the thickness direction due to the inhomogeneity parameter.
When the inhomogeneity parameter is equal to zero, the material property is constant through the thickness direc-
tion, which corresponds to a homogeneous medium. When the parameter is equal to one or minus one, the material
property increases linearly with the dimensionless thickness coordinate ζ , or the property varies inversely with the
coordinate ζ . To examine the effect of each material inhomogeneity, one of the parameters is varied independently
while the others are set to zero.
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Fig. 5 Difference in variation of temperature change in the thickness direction due to frequency in cyclic heating. (a) ε = 0.3, (b)
ε = 0.7
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Fig. 6 Difference in time evolution of deflection due to the inhomogeneity in Young’s modulus. (a) Quasi-static behavior of deflection;
(b) Dynamic response of deflection
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Fig. 8 Effect of frequency in cyclic heating on the amplification
factor of deflection

Figures 4 and 5 show the differences in time evolution of the temperature change at the upper boundary surface
ζ = 1, and in the variation of temperature change in the thickness direction due to frequency parameters in cyclic
heating, ε = 0.3, 0.7. Because the temperatures at the upper and lower boundary surfaces are prescribed, the
variation of angular frequency in cyclic heating does not affect the temperature difference between the upper and
lower boundary surfaces. The amplitude of temperature change in the plate at ε = 0.7 is slightly less than that at
ε = 0.3. This is because the phase lag in the temperature change between the upper boundary surface and the inside
of the plate are larger for ε = 0.7 than for ε = 0.3.

Now we examine the effect of inhomogeneity in Young’s modulus on the thermo-elastic response of the plate.
Figure 6 shows the difference in time evolutions of a quasi-static deflection and of a dynamic deflection for ε = 0.7
due to the inhomogeneity parameter in Young’s modulus m. The time evolution of the quasi-static deflection hardly
changes due to variation of the parameter m. The smaller the parameter m, the larger the maximum amplitude in
the dynamic deflection will be. A beat-wise oscillation in the dynamic deflection is seen for m = −1. Figure 7
indicates the effect of the inhomogeneity in Young’s modulus on the amplification factor of deflection for frequency
parameters in cyclic heating equal to ε = 0.3 and ε = 0.7. Here the amplification factor of deflection is defined by
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Fig. 10 Effect of
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modulus on the
amplification factor of
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the ratio of the maximum amplitude of dynamic deflection to that of quasi-static deflection. As the inhomogeneity
parameter in Young’s modulus m decreases, the amplification factor of deflection increases. The variation of the
amplification factor of deflection with the parameter m for ε = 0.7 is larger than that for ε = 0.3. Figure 8 indi-
cates the effect of frequency in cyclic heating on the amplification factor of deflection. The amplification factor of
deflection increases with the parameter in cyclic heating ε. The amplification factor of deflection increases with the
frequency parameter in cyclic heating ε. The variation of the amplification factor of deflection for m = −1 is the
largest among those of the three parameters. The dimensionless form of the fundamental natural angular frequency
of the inhomogeneous square plate �11 is expressed as

�11 = 2π2

√
c̄3h̄4

µ̄
. (71)

As the inhomogeneity parameter in Young’s modulus m decreases, the flexural rigidity c̄3 decreases, and thus
the dimensionless fundamental natural angular frequency �11 decreases. Then the dimensionless fundamental
natural angular frequency �11 becomes closer to the dimensionless angular frequency in cyclic heating ω̄. Con-
sequently, this induces an increase in the amplitude of the flexural vibration, and a beat-wise time evolution of
the dynamic deflection occurs. Figure 9 shows the difference in time evolution of the quasi-static behavior and
the dynamic response of the thermal-stress component σ̄xx at the upper surface ζ = 1 due to the inhomogene-
ity parameter in Young’s modulus m. The parameter m hardly has an effect on the quasi-static behavior of the
thermal-stress component σ̄xx at the upper surface. Meanwhile the amplitude of the dynamic response of the ther-
mal-stress component σ̄xx at the upper surface increases as the inhomogeneity parameter in Young’s modulus m

decreases.
Figure 10 indicates the effect of the inhomogeneity in Young’s modulus on the amplification factor of the ther-

mal-stress component σ̄xx at the upper surface ζ = 1 for frequency parameters in cyclic heating equal to ε = 0.3 and
ε = 0.7. Here the amplification factor of thermal-stress component σ̄xx at the upper surface ζ = 1 is defined by the
ratio of maximum amplitude of the dynamic thermal-stress component σ̄xx at the upper surface ζ = 1 to that of the
quasi-static thermal-stress component σ̄xx at the upper surface. The inhomogeneity parameter in Young’s modulus
m hardly affects the amplification factor of the thermal-stress component σ̄xx at the upper surface for ε = 0.3.
The amplification factor of the thermal-stress component σ̄xx at the upper surface for ε = 0.7 increases as the
parameter m decreases. Because the angular frequency in cyclic heating ω̄ for ε = 0.7 is close to the dimensionless
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Fig. 11 Effect of inhomogeneity in the coefficient of linear ther-
mal expansion on the amplification factor of deflection
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Fig. 12 Effect of inhomogeneity in the coefficient of linear ther-
mal expansion on the amplification factor of thermal stress σ̄xx

at the lower surface ζ = 2
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Fig. 13 Effect of inhomogeneity in mass density on the ampli-
fication factor of deflection
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Fig. 14 Effect of inhomogeneity in mass density on the ampli-
fication factor of thermal stress σ̄xx at the lower surface ζ = 2

fundamental natural angular frequency �11, the amplitude of the bending-stress component σ̄xx-out at the upper
surface increases with the amplitude of the dynamic deflection.

Next, we examine an effect of the inhomogeneity in the coefficient of linear thermal expansion on the thermo-
elastic response of the plate. Figure 11 indicates the effect of the inhomogeneity in the coefficient of linear thermal
expansion on the amplification factor of deflection for frequency parameters in cyclic heating ε = 0.3 and ε = 0.7.
The amplification factor of deflection hardly changes with the parameter n. The amplification factor of deflection
for ε = 0.7 is larger than that for ε = 0.3. Figure 12 indicates the effect of the inhomogeneity in coefficient of linear
thermal expansion on the amplification factor of the thermal-stress component σ̄xx at the lower surface ζ = 2 for
frequency parameters in cyclic heating ε = 0.3 and ε = 0.7. The amplification factor of the thermal-stress compo-
nent σ̄xx at the lower surface hardly changes with the parameter n. The amplification factor of the thermal-stress
component σ̄xx at the lower surface for ε = 0.7 is larger than that for ε = 0.3.

Next, we examine the effect of inhomogeneity in mass density on the thermo-elastic response of the plate. Fig-
ure 13 indicates the effect of the inhomogeneity in mass density on the amplification factor of deflection for ε = 0.3
and ε = 0.7. The amplification factor of deflection increases with the inhomogeneity parameter in mass density γ .
The variation of the amplification factor of deflection for ε = 0.7 is larger than that for ε = 0.3. Figure 14 indicates
the effect of the inhomogeneity in mass density on the amplification factor of thermal-stress component σ̄xx at the
lower surface ζ = 2 for ε = 0.3 and ε = 0.7. The amplification factor of thermal-stress component σ̄xx at the lower
surface ζ = 2 increases with the parameter γ . The variation of amplification factor of the thermal-stress component
σ̄xx with the parameter γ for ε = 0.7 is larger than that for ε = 0.3.

Figures 15 and 16 show the cubic diagrams and the cross-section diagrams of the dynamic deflection of rectan-
gular plates at x̄ = 0.5 with aspect ratios b̄ = 1 and b̄ = 3, respectively.

From Figure 16a the deflection curve shows the fundamental natural mode of flexural vibration in a square plate
of aspect ratio b̄ = 1. In the rectangular plate of aspect ratio b̄ = 3, in addition to the fundamental natural mode of
the deflection curve, a higher-order mode of deflection curve in the longitudinal direction ȳ can be seen in Fig. 16b.
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Fig. 15 Difference in the cubic diagrams of dynamic deflection due to aspect ratio of plate. (a) Square plate of b̄ = 1; (b) Rectangular
plate of b̄ = 3
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Fig. 16 Difference in distribution of dynamic deflection due to aspect ratio of plate. (a) Square plate of b̄ = 1. (b) Rectangular plate
of b̄ = 3

Fig. 17 Variation of natural
angular frequencies due to
aspect ratio of plate
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Figure 17 shows the effect of the aspect ratio of the plate on the natural frequencies for the inhomogeneity parameter
in Young’s modulus m = −1. The natural angular frequencies �11 and �13 in a plate of the aspect ratio b̄ = 1 are
larger than the angular frequency in cyclic heating ω̄ for ε = 0.7. The natural angular frequencies of higher-order
modes in the longitudinal direction ȳ decrease considerably with an increase in aspect ratio b̄. The natural angular
frequency �13 in the rectangular plate of aspect ratio b̄ = 3 is closer to the angular frequency in cyclic heating ω̄

for ε = 0.7 than the fundamental natural frequency �11. Consequently, this forms the higher-order mode of the
flexural vibration in the longitudinal direction.
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5 Concluding remarks

The equations of motion governing thermally induced vibration of plates with inhomogeneous material proper-
ties through the thickness direction have been presented. Subsequently, equations of motion of thermally induced
flexural vibration for inhomogeneous rectangular plates in which material properties are given as a power of the
thickness coordinate have been derived from the above-mentioned fundamental equations. An exact solution of
the one-dimensional temperature change has been obtained for an inhomogeneous plate in which one surface is
exposed to a sinusoidally varying temperature, and the other is kept at zero temperature change. The associated
quasi-static and dynamic solutions pertinent to deflection and thermal stresses in the inhomogeneous rectangular
plate have been derived for a simply supported edge condition. Numerical calculations have been performed, and
the effects of material inhomogeneity such as Young’s modulus, coefficient of linear thermal expansion, and mass
density, angular frequency in cyclic heating, and aspect ratio on thermo-elastic response of the rectangular plate
have been examined.

Numerical results are summarized as follows:
The larger the angular frequency in the cyclic heating, the smaller the amplitude of the temperature change inside the
plate will be. Because temperatures at the upper and lower boundary surfaces are prescribed, the variation of angular
frequency in cyclic heating does not affect the temperature difference between upper and lower boundary surfaces.
The variation of the inhomogeneity parameter of Young’s modulus m hardly affects the amplification of the quasi-
static deflection. As the inhomogeneity parameter of Young’s modulus m decreases, the maximum amplitude of the
dynamic deflection increases, and the shape of the time evolution of the dynamic deflection changes. Consequently,
the amplification factor of the deflection increases as the inhomogeneity parameter of Young’s modulus m decreases.
The inertia effect in the deflection is most notable for the parameter in cyclic heating ε = 0.7. As the maximum
amplitude of the dynamic deflection increases, the amplitude of the subsequent dynamic thermal stresses increases.
The amplification factor of the dynamic deflection increases with the angular frequency in cyclic heating, because
the angular frequency in cyclic heating becomes close to the fundamental natural angular frequency of the plate.
The variation of the inhomogeneity parameter in the coefficient of linear thermal expansion n hardly affects the
amplitude and the time evolution of the thermal resultant moment. The inhomogeneity parameter in the coefficient
of linear thermal expansion n hardly affects the amplification factors of the deflection and the thermal stress. The
amplification factors of the deflection and the thermal stress increase with the inhomogeneity parameter in mass
density γ . The inertia effect in the deflection and the subsequent thermal stress is clearly visible for a parameter
in cyclic heating equal to ε = 0.7. As the aspect ratio of the plate b̄ increases, higher-order mode curves of the
deflection and the thermal stress in the longitudinal direction are seen. As the aspect ratio of the plate b̄ increases,
the natural angular frequencies of higher-order modes in the longitudinal direction decrease considerably, coming
close to the angular frequency in cyclic heating.
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